Direct Proofs

Define the following subsets of
$$\mathbb{Z}$$
: $E = \{x \in \mathbb{Z} : \exists k \in \mathbb{Z} \text{ such that } x = 2k \}$ even
$$O = \{x \in \mathbb{Z} : \exists k \in \mathbb{Z} \text{ such that } x = 2k + 1 \}$$
 odd
$$T = \{3k : k \in \mathbb{Z} \}$$
 threven
$$U = \{6k + 1 : k \in \mathbb{Z} \}$$
 unty
$$Q = \{6k + 5 : k \in \mathbb{Z} \}$$
 quinty

Remember that the variables used in the set notations above are not significant—don't ever use the same variable to represent more than one thing in a given context!

Prove the following propositions:

1.
$$x, y \in O \implies x + y \in E$$
.

$$2. \ x \in E \ \land \ y \in O \ \Rightarrow \ xy \in E.$$

$$3. \ x \in O \ \Rightarrow \ \tfrac{x+1}{2} \in \mathbb{Z}.$$

4.
$$\mathbb{Z} = E \cup O$$
.

[Hint: Use (*) with b = 2 and split cases.]

5.
$$U \subset O$$

6.
$$x \in T \implies 2x - 5 \in U$$

7.
$$x \in Q \implies x^2 \in U$$

8.
$$x \in Q \land y \in U \implies x - y \in E$$

9.
$$\mathbb{Z} = E \cup T \cup U \cup Q$$

[Hint: Use (*) with b = 6 and split cases.]

10.
$$x \in Q \land y \in U \Rightarrow x + y \in E \cap T$$

^{*} Keep in mind the division algorithm: Given any $a, b \in \mathbb{Z}$ with b > 0, we can write a = bq + r for some $q, r \in \mathbb{Z}$ with $0 \le r < b$.